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ABSTRACT 

With the recent exploration of how we may improve livestock production and meet 

growing demand for animal protein products using genome editing technology, we 

argue that exemplary genome references will be required to ensure that the proposed 

edits are specific and carefully evaluated for any potentially harmful side effects. We 

explore in this short review the status of existing genome references for the major food 

producing animals (cattle, chicken, pigs, goat and sheep) and summarise best practice 

for creating future higher quality genome references. Each will serve as a central 

conduit in the study of genetic manipulation outcomes, and provide a computational 

workflow for how the edited genome could be evaluated for no other unexpected base 

changes in the rest of the genome.  

 

CONFERENCE PAPER  

A significant contribution to experimental model systems permeates the history of 

domestic animal studies (Megens and Groenen 2012). Many reproductive success 

stories in human fertility were first pioneered in cattle; the transgenic cow is used to 

produce proteins in their milk for human therapeutics, and a long history of collecting 

animal tissues from abattoirs for the purification of various biologicals continues today. 
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The finding that injections of tumour filtrate into healthy chickens reproduced observed 

tumours initiated the field of viral oncology (Rubin 2011). These are but a few examples 

that highlight the many contributions that food-producing animals have made to 

advances in biomedical science. However, their most significant contribution to society 

is as a food source; and suffice to say that without a safe and efficient supply of food-

producing animals, a significant percentage of our world population would be severely 

malnourished and possibly starve to death. The ability to feed the world is even more 

urgent today, with a world population predicted to reach 9.7 billion by 2050 (UN DESA 

Report; https://esa.un.org/unpd/wpp/). With the recent exploration of how we may 

improve livestock production and meet growing demand for animal protein products 

using genome editing technology, we argue that exemplary genome references will be 

required to ensure that the proposed edits are specific and carefully evaluated for any 

potentially harmful side effects. We explore in this short review the status of existing 

genome references for the major food producing animals (cattle, chicken, pigs, goat and 

sheep), summarise best practice for creating future higher quality genome references. 

Each will serve as a central conduit in the study of genetic manipulation outcomes, and 

provide a computational workflow for how the edited genome could be evaluated for 

no other unexpected base changes in the rest of the genome.  

 

Today we are fortunate to have access to sequencing technology that can advance our 

ability to obtain near complete DNA sequences of each food-producing genome. At 

present, moderate-quality genome references are available for all food-producing 

species including cattle, chicken, sheep and pig that can serve as a computational 

starting point to ensure the traits we wish to protect, enhance or suppress are studied 

with a relatively small loss of information (Table 1). We label these references as 

‘moderate’ quality since the most realistic measure of completeness is the number of 

contigs or “gap-free sequences” being equal to the expected total chromosome count. 

However, in each case, total contig numbers are far higher in these animals compared to 

the human genome. Advances in sequencing technology and physical mapping of 
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chromosomes, specifically those producing longer reads, have brought on the eager 

expectation that we will elevate each of these references to near human quality, 

hopefully, single scaffolds per chromosome with a small number of contigs per scaffold. 

The recently assembled goat genome provides validation of this expectation with 31 

assembled scaffolds equivalent to the expected number of chromosomes (Derek M 

Bickhart 2016). Moreover, we are aware of recent assemblies of the chicken, pig and 

bovine genomes using this same path of long read technology that promises to offer the 

community high genome reference quality for future computational and genomic 

studies. 

  

A variety of approaches can be used to address sequence connectivity deficits observed 

in these genome references (Table 1). However, to date, the best practice for a vertebrate 

is first to sequence the genome to a minimum of 60x sequence coverage of long reads 

(mean size ~14kb) and assemble all reads with the best-suited algorithm. Once high 

molecular weight DNA (>50kb fragment length) is obtained (a crucial first step to success), 

to our knowledge, all vertebrate genomes are being sequenced on the PacBio RSII 

instrument with Single Molecule Real-Time (SMRT) reagents. It is likely that the recently 

introduced PacBio Sequel instrument will supplant the RSII as soon as read length reaches 

RSII equivalency or close to it. Currently, the RSII instrument routinely provides an average 

read length of ~14 kb in our production labs with the longest read lengths often exceeding 

50 kb. Individual PacBio read error rates (~85%) are resolved by high sequence coverage 

(>50-fold), which allows generation of highly accurate base consensus (>99.9%). Long-

read sequence assemblers continue to evolve, but we have adopted the use of the 

DALIGNER (Myers 2014) as a first step toward read error correction and FALCON for read 

overlap and string graph layout, followed by QUIVER to generate consensus error-

corrected sequence (Chin 2014). Despite the efficiency of error correction with QUIVER, 

we have found it necessary to clean up residual errors, mostly insertions and deletions, 

using aligned Illumina paired-end (125bp length) sequences and PILON (Walker et al. 

2014). False protein-coding frameshifts are largely eliminated as a result of this final step. 

http://www.nibjournal.ed.ac.uk/
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Using one such assembly algorithm (Berlin et al. 2015), the goat (Capra hircus) genome 

reached unprecedented levels of sequence continuity (Table 1), thus demonstrating the 

clear advantages of recent technological advances in genome assembly. 

 

Starting with the most contiguous assembly possible, the next step is to apply high-

resolution mapping/phasing technology, such as chromatin sequence maps that will 

produce a proximity-guided assembly, thus creating chromosome-scale scaffolds that in 

theory should match total chromosome count. Fortunately, recent methodological 

advances have mostly overcome prior assembly connectivity bottlenecks by either 

adapting a chromosome conformation capture technique (Selvaraj et al. 2013) or utilizing 

restriction enzyme cuts of long DNA strands that are separated on nanochannel arrays 

(Hastie et al. 2013). By using a combination of these scaffolding methods the 3,074 

assembled goat contigs were connected to a final count of 31 scaffolds, the known 

number of chromosomes for goat (Bickhart 2016). In the chicken, genome-wide study 

designs continue to be incomplete due to missing autosomes, in particular, the high GC-

content microchromosomes (cite G3 paper). Utilization of long read assemblies and high-

resolution maps will resolve most of these deficiencies. 

 

In the final phase of genome assembly curation, its accuracy is typically judged by the 

following metrics: the appearance of homologous reference differences compared to 

called single base, small (<6bp) insertion or deletions, all from same source DNA 

sequences, and if available long mate pair sequences that display alignment discordance 

in order or orientation of scaffolds or contigs within scaffolds. For the latter, a conundrum 

is few automated tools can make genome-wide decisions on assembly order or 

orientation without manual review as these often involve repeats, segmental duplications 

or tandem arranged gene families.  

 

Over a decade ago Georges and Andersson highlighted the excitement and promise of 

dissecting quantitative trait loci (QTL) of economic value (Andersson and Georges 2004). 

http://www.nibjournal.ed.ac.uk/
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Genome references for the greatest economically impactful food producing species, 

cattle, sheep, pigs, goats and chickens are now being used to generate large volumes of 

genotype data that link natural nucleotide variation to phenotypic variation within the 

context of a production environment. A consequence of access to higher resolution SNP 

panels and whole genome sequencing (WGS) methods is that QTL are now often resolved 

to the limits of linkage disequilibrium, even with a keen focus on the more interpretable 

coding variation. Today some of these loci have been subjected to selection that further 

advance trait averages with monetary benefits. However, this process is still slow, and 

beneficial variation can be inadvertently removed or perhaps worse, deleterious variants 

propagated by linkage. It remains a major challenge to unravel the genes and the 

regulatory elements that control specific traits before we even consider specific target 

sequences for genome editing. Should high-value targets be identified, targeted genome 

editing offers a method to alleviate the disadvantages of selective breeding, mainly the 

time required to reach a selection target. Despite the advances in genome editing, it is 

not the sole answer to advance traits of value, but when combined with genomic selection 

and assisted reproductive technologies, it could transform current livestock improvement 

strategies. 

 

In his 2005 review of domestic animal genomics, Womack said: “RNA interference may 

soon find its way into animal improvement, likely in conjunction with cloning from 

modified somatic cells.” Since this time, genome editing has come of age and been 

applied to a limited number of food animals (Whitworth et al. 2016) (Choi et al. 2016) 

(Carlson et al. 2016) (Dimitrov et al. 2016). One of the most exciting applications of 

genome editing is the control of infectious disease, which is a critical need facing livestock 

producers throughout the world (Smith et al. 2016). The host-pathogen relationship have 

become essential to the spread of new viral strains with major international impact such 

as new strains of avian influenza on poultry production. To protect future pig populations 

from devastating viral outbreaks Prather et al. edited an entry receptor for porcine 

reproductive and respiratory syndrome virus infection (Whitworth et al. 2016). Another 

http://www.nibjournal.ed.ac.uk/
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application of significance to animal welfare and human safety when handling cattle is to 

generate hornless cattle (Carlson et al. 2016). Using knowledge of naturally polled genetic 

variation (Medugorac et al. 2012), the locus responsible was edited to produce hornless 

cattle thus improving the welfare of cattle by avoiding painful dehorning procedures. 

These are just a few examples that demonstrate how genome editing can introduce highly 

valuable natural variants, even those that would be outside of the available breeding 

population, onto the best genetic backgrounds in one generation without compromising 

the years of selection of such elite genetic stocks.  

 

The simplicity, scope, and accuracy of genome editing technologies are truly astounding. 

In fact, our knowledge of the sequences/regions to edit in food producing animals with 

thousands of QTLs (see http://www.animalgenome.org/cgi-bin/QTLdb/index) already 

identified for simple monogenic and complex polygenic traits, presents a conundrum as 

to which targets do we apply this editing capability. An added caveat is that few of these 

QTLs have definitive causative alleles identified. However, given the economic impact of 

many of these traits, the incentive to remove or replace associated alleles will eventually 

lead to genome targets. Of course, this is a simple picture with extensive experimentation 

required to pinpoint the genes or regulatory regions that will alter the phenotypic 

outcome. Advances in the characterisation of genes, transcripts and their regulatory 

regions (a core goal within the FAANG consortium; http://www.faang.org) are likely to 

underpin the prediction of genes and genetic variant causally linked to simple and 

complex traits. Genome editing is likely to be an essential tool in our armory to test these 

predictions in either cell, tissues, organoid or even whole animals. Ultimately, specific 

genome targets will come into focus and editing experiments will follow. It is expected 

that equal rigor will be devoted to safety assessments to ensure animal well-being and 

long-term germplasm diversity, since substantial financial investment will create fewer 

founders to pass the trait to future generations and, perhaps most importantly, to 

determine whether the edit meets phenotypic expectations. 

 

http://www.nibjournal.ed.ac.uk/
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It is generally underappreciated that genome editing is just breaking the chromosomal 

DNA and then allowing the cells natural ability to fix the break precisely and thus 

incorporate the intended sequence (Segal and Meckler 2013). The basic process is to 

identify a target sequence to be edited, computationally design a single guide RNA 

(sgRNA) to introduce the base(s) change, inject the sgRNA and associated reagents into 

the stem cell, transfer the embryo to the host and if the pregnancy is successful validate 

the expected edit, and perhaps most importantly start monitoring animal health and 

performance. The design of sgRNAs has been simplified in the past few years with several 

bioinformatic pipelines offered (Wong et al. 2015) (Doench et al. 2016), but if reference 

errors occur sgRNA design will be flawed and lead to missed targets. Also, to cope with 

genetic variants and polymorphisms in target genomes, it is necessary to re-sequence 

many animals in the population and compare them to the reference, again to avoid 

unwanted off-target sgRNA design errors. Protein-coding gene annotation of food 

producing genomes is mostly sufficient for sgRNA design to target coding regions. 

However, paralogs, copy number variants, and non-coding RNAs require further attention 

in each assembly. Newly available transcript sequencing technology such as Iso-Seq 

(http://www.pacb.com/applications/rna-sequencing/) will rectify many gene annotation 

deficiencies (Kuo et al., submitted), especially the characterisation of all alternate 

transcripts and for long non-coding RNA annotation, the most in need of improvement. 

Also, the functional annotation of animal genomes (FAANG Consortium) will aid 

annotation of regulatory regions that may be targeted for change once experimental 

validation catches up.  

 

Most evidence indicates that genome editing, specifically CRISPR methodology, is precise 

and not off-target (O'Geen et al. 2015). However, concerns remain that the edited 

genome can contain foreign DNA not detected with standard PCR and Southern blot 

techniques (Kim and Kim 2016). Given the high value of these edited founder animals and 

the need to ensure a thorough investigation of unexpected off-site effects, we suggest 

some measures of post-editing genome integrity be implemented. To provide a starting 

http://www.nibjournal.ed.ac.uk/
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template for evaluating genome edited food-producing animals, we briefly outline the 

computational steps using the chicken genome as an example (Figure 1). Our process 

overview is mostly based on many previously established cancer genome analysis 

pipelines that compile genetic differences among the genomes of normal and cancer 

genomes within the patient. Once the genome edited animal is confirmed to contain the 

targeted base change(s), typically a PCR strategy (Carlson et al. 2016), an iterative series 

of steps is proposed: DNA is extracted from the pre- and post-edited genomes, PCR-free 

libraries are constructed of short fragment size (~450bp), the genome is sequenced to a 

minimum of 30x coverage using an X10 Illumina instrument (recommended for cost 

efficiency) and all sequences (150bp length) are filtered for quality using the PICARD 

software package module CollectWGSMetrics then mapped using the BWA-MEM aligner 

to the appropriate animal genome reference for several computational measures. First, 

any sequences associated with the targeting sgRNA can be identified with fast alignment 

tools such as BLAT. This step also serves to validate the prior PCR results for base(s) 

modification. From previous sequence alignments, all single nucleotide polymorphisms 

(SNPs) and small insertions and deletions (<10bp) are called with two independent callers, 

such as VarScan2 (Koboldt et al. 2013) and Strelka (Saunders et al. 2012). Currently the 

best practice is to converge independent SNP or indel calls to reduce false positives. The 

converged SNP and indel variant files can be imported into various software tools to 

evaluate many pre- and post-edited genome properties, for example, we recommend the 

use of the Ensembl VEP tool (McLaren et al. 2010) to catalogue putative loss of function 

variants within protein coding genes that may impact animal health, although these 

events could be unrelated to the editing process. 

 

Although it is clear that structural or copy number variants are a major source of variation 

among humans, their accurate ascertainment is still challenging. The use of physical 

mapping methods based on whole genome restriction maps is likely to make this easier. 

We suggest a standard copy number variant analysis, such as CopyCat (Sehn et al. 2014), 

be executed to reveal any significant genome aberrations, i.e. expansions or contractions, 

http://www.nibjournal.ed.ac.uk/
http://dx.doi.org/10.2218/natlinstbiosci.1.2016.1745


10 

 

National Institutes of Bioscience Journal 2016, Vol. 1    
http://www.nibjournal.ed.ac.uk/                                 http://dx.doi.org/10.2218/natlinstbiosci.1.2016.1745 
 

that in some cases can merit further investigation. The tools for this analysis are ever 

changing, but we offer some choices based on ease of use, accuracy, and sensitivity 

(Figure 1). Taking advantage of fully developed computational pipelines that generate 

concise reports of mutation burden in cancer patients will allow these same best practices 

to be implemented for examining pre- and post-edits to the food-producing genome. Of 

course, some modifications will be needed. Also, genome editing reports can be modified 

to account for the regulatory standards that are not clear at this point for food producing 

animals.   

 

It is exciting to see reference genome assembly completeness and accuracy for many 

organisms is now nearly reaching quality standards found in the human genome. This 

development is largely the result of long reads spanning repeats and complete physical 

maps of chromosomes that allow for de novo assembly as never found before. Not 

surprisingly, we conclude accurate genome assembly and annotation (Not covered here; 

but an equally important task to define all coding and non-coding transcripts, and their 

regulatory regions) is required for the success of genome editing experiments. Assuming 

the genomes of food-producing animals will continue to be edited, we expect 

standardised methods will be developed and validated to compare genomes before and 

after genetic manipulation. Measured perturbations to genome integrity or the possibility 

of finding foreign DNA sequences in animal genomes destined for food consumption 

compelled us to provide an overview of computational methods and to start discussions 

of best practices to assure the public that attempts are being made to alleviate concerns 

about animal welfare or food safety.  
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Table 1. A summary of food-producing animal genome assembly measures of annotation 

 

 

Species 

 

 

NCBI version 

N50 

contig 

length 

 

Total 

contigs 

 

 

Reference 

 

 

Protein coding genes 

 

 

Non-coding genes 

Gallus gallus Gallus_gallus-5.0 2.9 Mb 24,693 (Warren et al. 2016) 19,137 6,550 

Bos Taurus Btau_5.0.1 276kb 42,267 None 21,514 5,563 

Ovis aries Oar_v4.0 150kb 48,482 None 20,645 3,861 

Sus scrofa Sscrofa10.2 69kb 243,033 (Archibald et al. 2010) 24,205 12,191 

Capra hircus ASM17044v1 26 Mb 30,399 (Bickhart 2016) 20,755 4,011 

 

 

 

 

Figure 1.  Computational steps for evaluating genome edited chickens
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